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1. Introduction

Many approaches to quantum gravity propose to replace the continuous geometry of space-

time by a discrete approximation whose underlying discreteness is concentrated at the

Planck scale, the distance scale at which quantum effects are important. It is assumed

that this discrete theory is the correct description of gravitational physics at the Planck

scale (recent examples of such ideas in concrete settings amenable to computer simulations

can be found in [1]). The main technical problems with these approaches is to show that

in the continuum limit (if it exists) one reproduces Einstein’s theory of general relativity.

This continuum limit would be related to quantization of gravity on large manifolds (as

measured in Planck units), and classical geometry would be emergent in the sense that

the continuum geometry is not part of the discrete problem, but that it only appears in

a suitable limit. This will only be possible if one has a consistent quantum mechanical

evolution (thereby solving the problem of time), as well as a semiclassical state of the the-

ory that permits making the comparison to a semiclassical or classical approach based on

perturbative techniques.1

1To show that one can excite gravitational waves, or other quanta of the theory, one would need a family

of such solutions, which are to be considered as small perturbations of the original solution.
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Once one would obtain such a theory, it might be very hard to solve it in general and it

is desirable that the discrete theory could be simulated on a computer. The main objective

would be to try to analyze typical configurations and to ask what new phenomena can be

understood in this way. Clearly, if one wants to simulate an infinite space like Minkowski

space or AdS geometries, one would need an infinitude of points and then such type of

computational approach would need to be regulated somehow.

There are other approaches to a definition of quantum gravity that do not begin by

assuming that spacetime is there as a fundamental object either. Within string theory,

a very concrete proposal for a formulation of quantum gravity on AdS geometries that

implicitly solves the problem of time is given by the AdS/CFT correspondence [2]. The

simplest example of the AdS/CFT correspondence states that type IIB string theory on an

asymptotically AdS5×S5 spacetime with N units of flux is exactly equivalent as a quantum

mechanical system to the maximally supersymmetric SYM theory with gauge group SU(N)

in four dimensions, compactified on the conformal boundary of (global) AdS5 × S5 . This

conformal boundary is S3 ×R. Thus, the quantum field theory is compactified on a round

three sphere, and one has time translation invariance associated to the R direction. Since

the SYM theory has a consistent quantum mechanical evolution and Hamiltonian, the

problem of gravitational physics is to understand how the geometry of the ten dimensional

spacetime is encoded in the quantum system associated to the field theory. This can be

rephrased as the following question: how does metric geometry emerge?

In particular, the SYM theory should in principle contain all of the (consistent) solu-

tions of Einstein’s equations with the required boundary conditions, so long as their radius

of curvature is large in Planck units everywhere. These classical gravity solutions should

be associated to some semi-classical state in the gravitational formulation, and for each of

these one would have a dictionary to a particular state of the SYM theory (this is, a non-

trivial wave function of the SYM theory). The dynamical evolution of these CFT states

should reproduce in some way the dynamical evolution of the gravitational solution.

In this paper we want to show that many2 aspects of this question can be analyzed

numerically in the CFT, whereby one would recover a lot of information of various ten

dimensional metrics from doing a computer simulation with finitely many degrees of free-

dom. The simulation we propose and execute in this particular paper is a Monte-Carlo

algorithm that explores wave functions of an associated problem of N identical particles

in six dimensions. The relations of this particular system to the strong coupling limit of

the CFT were explained and justified in [3] and we will revisit them later on in the intro-

duction. Given the wave functions, the distribution of particles in six dimensions in the

thermodynamic limit (moderately large N) is concentrated on a five dimensional subman-

ifold of R
6, and this submanifold is associated to a five-dimensional slice of the geometry

of the ten dimensional spacetime.

In this paper we will be testing aspects of this idea with the simplest possible configu-

rations, and we will show that there is an opportunity to study aspects of quantum gravity

2The word many in this phrase can be replaced by some or few, according to the detailed questions one

wants to address.
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that are not accessible otherwise with these numerical methods. The main goal of this

paper is to explain how such an identification is possible and to give numerical evidence

supporting such an identification.

From a more general perspective, one of the biggest problems we have to face when

trying to match gravity solutions and SYM states is that the SYM states have to be

evaluated at strong coupling, and very little is known about the behavior of SYM at strong

coupling from first principles. In a similar vein, very little is known about the ”most

general solution of Einstein’s equations” with the requisite boundary conditions. We need

a simpler problem, just because our calculational abilities are limited.

Thus, it seems reasonable to restrict the problem further and exploit the supersym-

metry of the supergravity and CFT problems to get to a more manageable set of states to

compare. In this sense, we can choose to find states that preserve many supersymmetries

and symmetries. With these restrictions it is possible to make some headway into the

problem of matching both sides of the duality. This is the main simplification of the prob-

lem that lets us reduce the degrees of freedom sufficiently to make a detailed comparison

possible. In principle one could expect that other simplifications that use symmetries can

result in a similar reductions of the degrees of freedom.

It seems reasonable to choose states that preserve 1/8 of the supersymmetries. The

reason to choose such states, is that such a class of states can be associated to the chiral

ring of the SYM via the operator state correspondence, and the chiral ring has many non-

renormalization theorems that permit a sensible comparison. This is also done to avoid

the potential problem of having to evaluate a very complicated set of quantum corrections.

The other advantage of choosing such states, is that they are guaranteed to be associated

to supergravity solutions of string theory, because the only one-particle states saturating

the BPS bound in the gravitational theory are those associated to massless particles [4, 5],

and the only massless particles lie in the supergravity multiplet. Thus, in this case we do

not have to test if we have a state made of heavy strings before comparing to geometry: one

is guaranteed to be testing solutions of the type II supergravity theory in ten dimensions.

Our analysis of BPS states begins with the field theory (CFT) setup. It is conve-

nient to work in the canonical formalism of the field theory dynamics, for the field theory

compactified on S3 × R. The SYM theory multiplet contains as part of its spectrum 6

scalar fields φa(x, t) in the adjoint of U(N), where x is the position of the field in S3 (the

dynamics of the U(1) degrees of freedom are decoupled and can be ignored). To solve the

theory in the free field limit, one would decompose the fields φ into spherical harmonics of

the sphere S3, in a normal mode decomposition

φa(x, t) =
∑

φ̃a
l,m(t)Ylm(x) (1.1)

Here we are abusing notation as if the S3 where a two-sphere.3 The important point is that

3In practice, the S3 has an SU(2) × SU(2) isometry group, and the normal modes of a scalar appear in

the (n/2, n/2) representations of this group. Thus, the principal quantum number n classifies the states

with the same energy. In our abused notation, l ∼ n and m includes the spin z quantum numbers of both

SU(2) groups.

– 3 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
1

we have now a sum over a discrete set of oscillators, and it is straightforward to compute

their energies, wl,m ∼ l + 1.

A straightforward analysis of the chiral ring states shows that the only oscillators that

are turned on near the free field limit are those with l = 0 [6], what one would call the

s-wave of the normal mode expansion. These are just constant field configurations.

Because of these facts, and because the states we want to explore are supersymmetric,

one can assume that even at strong coupling only such constant field configurations are

relevant, and that supersymmetry will guarantee that a semiclassical approach is essentially

exact [3].

The advantage of this formulation for a partial solution via a BPS problem, is that

it reduces the problem of infinitely many degrees of freedom of the field theory (all the

spherical harmonics of the sphere) to finitely many degrees of freedom.

For these degrees of freedom, we can write an effective Hamiltonian, which is the di-

mensional reduction of the field theory on a sphere to the constant modes. This hamiltonian

is given by

Heff = tr





6
∑

i=1

1

2
(DtX

i)2 +
1

2
(Xi)2 +

6
∑

a,b=1

g2
Y M

8π2
[Xa,Xb][Xa,Xb]



 (1.2)

where the Xi are six N × N hermitian matrices, and we have gauge transformations

Xi → U−1XiU where the U are unitary matrices. The factors of 8π2 in the interactions

arise from choosing canonical normalization of the matrix fields, once the volume of the

three sphere is taken into account. A further reduction in degrees of freedom is obtained

from going towards strong ’t Hooft coupling, i.e. g2
Y MN large. This is because we usually

expect that for random matrices, the eigenvalues are of order
√

N . Thus the term that is

multiplied by g2
Y M gets an extra factor of N3, which tells us that at large N , the potential

term dominates the dynamics.

The idea is that to determine the ground state, as well as the low lying excitations of

the system we should look at the matrix configurations that minimize the quartic term, and

localize on those configurations. These configurations require the matrices Xi to commute.

There is still a family of matrix configurations that have these properties.

This is a very non-trivial statement, but there is strong evidence that this statement

is correct, by comparing the energies of semi-classical string states [7] in AdS5 × S5 with

the results of such an approach [8] (see also [9]), where the string states are constructed by

turning on the off-diagonal modes of the X fields in a perturbative expansion. These also

confirm other perturbative resumations of planar diagrams [11] and input from integrability

structures [10] by doing a calculation directly at strong coupling.

Being more careful about supersymmetry, one can notice that these configurations of

commuting matrices solve the F and D-term constraints of the field theory on flat space and

are associated to the moduli space of vacua of the N = 4 SYM. Having commuting matrices

is required in order to preserve supersymmetry, but it is not the only condition that one

needs. One also needs a holomorphic wave function [3]. Via a gauge transformation, we

can choose all the Xi to be diagonal simultaneously for these configurations, and then the
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dynamics of supersymmetric states in the chiral ring is a particular quantization of the

moduli space of vacua of N = 4 SYM. This moduli space is described by N (identical)

particles on C
3 (or R

6). Because we also have a kinetic term and a quadratic term, we are

going to obtain particular normalizable wave functions on this moduli space, and there will

also be a preferred origin where X = 0. The coordinates of these particles are the different

(correlated) eigenvalues of the Xi (this is in the same spirit as Matrix theory [12]). Thus

we can associate a six vector position per eigenvalue, as follows

~xj = (X1
jj, . . . ,X

6
jj) (1.3)

The quantum mechanics obtained in this way is almost free, as we have removed the

explicit interactions between the matrices by requiring them to commute. If we diagonalize

the matrices, we get an extra measure term µ2 from going to diagonal variables [3]. This

has been generalized to some orbifolds [13], and suggests that one can generalize most of

our techniques to the orbifold setup without too much trouble.

The problem of the study of the full CFT is reduced in this way to a study of a

dynamical problem of N particles in six dimensions with a given Hamiltonian. All we have

to do now is solve the dynamics and find a large class of wave functions ψ that solve the

(time independent) Schrodinger equation. Given any such wave function ψ, we then take

a modified wave function ψ̂ = µψ. The reason why it is convenient to absorb µ in the

definition of ψ, is that µ2 will be the measure that is required for orthogonality of different

eigenvalues of the Hamiltonian H.

From here |ψ̂|2 is a probability density in the usual sense, and it describes a gas of N

correlated particles on C
3. It is exactly the distributions of these particles in six dimensions

that are interesting for our purposes. The reason for this, is that one is supposed to

recover gravity in the classical limit as we send N → ∞, and one expects the gravitational

description to be some form of collective coordinates or thermodynamic description of the

field theory problem. The simplest such collective coordinate is the density distribution of

particles in this six dimensional space of a ”single particle” location.

It turns out that one can find a lot of approximate solutions of the Schrodinger equation

for the Hamiltonian obtained by this procedure, and that these are all normalizable wave

functions. The type of wave function that one obtains is similar to a thermal gas of

particles with a confining potential and with logarithmic repulsions in six dimensions,

which are induced by taking the logarithm of µ2. This type of problem is especially suited

to Monte-Carlo simulations. This is very easy to implement on a computer. In this paper

we will explain the algorithm we use to explore these configurations, as well as some of

the improvements required to take N large in a systematic way. We will also check our

numerical results with the known theoretical results for this kind of thermodynamic gas in

the large N limit (unfortunately very little is known analytically).

The connection of this (commuting) matrix quantum mechanics model to gravity re-

quires us to use the ideas of the AdS/CFT correspondence in detail in order to extract

gravitational information from these configurations. We will explain our proposal for what

kind of gravitational information we can expect to extract from these distributions of par-
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ticles. By comparing with other known behavior of exact BPS solutions in gravity [14], we

will be able to see that different topologies of spacetime are available to us.

Our paper is organized as follows. In section 2 we explore the Hamiltonians that we

are required to analyze, as well as the wave functions that we will study. We will also

describe and analyze some properties of the these wave functions in the thermodynamic

limit (large N limit). Some more results that are relevant for this section but are not

required for the main argument are in appendix A. This section can be skipped on a first

reading. In section 3 we describe the chiral ring and it’s relation to gravitational solutions.

We discuss in detail the half-BPS states and we review briefly the work of Lin, Lunin and

Maldacena [14]. We use analogy to establish a relation between the geometry of the particle

distributions obtained from the wave function calculations and the geometry of the dual

gravitational solution. In section 4 we describe in detail our Monte Carlo algorithm as well

as how we propose to handle the large N limit. Our numerical results are compared to

analytical large N theoretical results in section 5. We show that the numerical calculation

agrees well with the theoretical expectation for the matrix models. We also study some

configurations that are dual to LLM metrics, and that are associated to different topologies

of spacetime. We see a clear topology change. Moreover, we are able to show that the

matrix model we are studying can be used to infer the size of the geometry in Planck

units. This is, we are seeing evidence for effects that measure the Planck length in the

simulation. On the other hand, some of the features of the simulation do not seem to agree

with the LLM intuition. We end the paper with our conclusions and the prospects for

future simulations along the lines we have outlined.

2. Relevant exact results for quantum matrix models of commuting ma-

trices

As described previously, we have reduced the problem of the full CFT dynamics of N = 4

SYM to a simple matrix quantum mechanics, and we further reduced that problem to a

gauged quantum mechanical model of commuting matrices.

Because we can use gauge transformations to diagonalize matrices, the eigenvalues

of the matrices are the only relevant degrees of freedom. However, permutations of the

eigenvalues can be obtained by choosing to diagonalize the matrices via a different unitary

operator. As such, the permutations of the eigenvalues are a gauge symmetry, which can

be implemented by requiring that the wave function is invariant under such permutations.

This gives us a problem of bosons in a non-trivial setup.

Our purpose in this section is to explore the following Hamiltonian for N identical

(bosonic) particles in d spatial dimensions

H =
∑

i

− 1

2µ2
∇i · µ2∇i +

1

2
|~xi|2 (2.1)

where

µ2 =
∏

i<j

|~xi − ~xj |2 . (2.2)

– 6 –
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in the case where the dimension d is even (and eventually it will be strictly greater than

two). This Hamiltonian was derived in [3]. We refer the reader to that paper for details.

We should notice that if µ were replaced by one in 2.1 the Hamiltonian above would

look just like that of N particles in a d-dimensional harmonic oscillator, this is

H̃f ∼
∑

i

−1

2
∇i · ∇i +

1

2
|~xi|2 (2.3)

It is also clear that µ can only be important where |~xi−~xj| is small. It seems reasonable

to try to solve the Hamiltonian with the Gaussian wave function that would solve the simple

harmonic oscillator, plus some corrections where ~xi − ~xj is small.

If we try

ψ0 ∼ exp(−
∑

i

~x2
i /2) (2.4)

we can ask if ψ0 is actually an eigenstate of the above Hamiltonian.

Direct manipulation shows that

∇iψ0 = ~xiψ0 (2.5)

Similarly we can calculate

∇i · (µ2xi)ψ0 = (~xi)2µ2ψ0 + (∇i · xi)µ
2ψ0 + ψ0~xi · ∇iµ

2 (2.6)

from which we can calculate

−
∑

i

1

2µ2
∇i · µ2∇iψ0

easily

We notice the following facts. The first term behaves like ~x2
i ψ0 and cancels the

quadratic potential piece in the Hamiltonian. The second term is a constant times ψ0.

(This constant is Nd). The third term is

ψ0

∑

i

~xi · ∇iµ
2 (2.7)

We recognize that
∑

i ~xi · ∇i is an Euler vector for dilatations where ~xi → λ~xi simultane-

oulsy. Clearly µ2 is an eigenvalue of this operator with eigenvalue N(N − 1), because µ2

is a homogeneous function of the xi of this degree.

As such we obtain that

Hψ0 = E0ψ0 (2.8)

where E0 = N(N − 1)/2 + Nd/2. It should be pointed out that in the case d = 1, this

is exactly the energy of N2 harmonic oscillators, just as expected, because this is a single

matrix model quantum mechanics. This was solved in [15] (the review article [16] is also

very useful to get some intuition of these setups).

It is convenient at this point to define a new wave function by a similarity transforma-

tion ψ̂ = µψ. The measure of ψ that makes the Hamiltonian self-adjoint is given exactly

– 7 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
1

by µ2. This is, the probability for the particles to be located at various positions (within

a fixed region R about a particular set of positions) is

∫

R
µ2ψ∗ψ ∼

∫

R
ψ̂∗ψ̂ (2.9)

Let us change the d real coordinates of ~xj , x1
j . . . xd

j by the following complex combi-

nations

zs
j = x2s−1

j + ix2s
j (2.10)

by choosing a complex structure for the d dimensional space.

Now, let us consider a homogeneous polynomial of degree m in the zs
j coordinates, and

let us call this polynomial P . Furthermore, we need P to be symmetric when we exchange

the particles in C
3. With this additional information, we construct the wave function

ψP = ψ0P (zs
j ) (2.11)

The conjecture stated in [3] is that all of these wave functions are the exact wave

functions of the dual states to the chiral ring, and that the energy of the configuration

is given exactly by the degree of the polynomial. In the appendix A we study these

wave functions with the naive Hamiltonian written above where we have broken manifest

supersymmetry by our choices of which degrees of freedom we are keeping. One can state

that these wave functions are very good approximations to exact solutions of the non-

supersymmetric Hamiltonian above. So if one were to do the same analysis being careful

about supersymmetry, it is likely that one might be able to prove exactness of the wave

functions. It would be desirable to have such a formulation. For our purposes, all we need

is the knowledge of the wave functions themselves.

Their R charge (quantum numbers under rotations of the X fields) of the wave function

is also the degree.

Notice also that when we calculate an overlap of two holomorphic wave functions with

different degrees in the form
∫

|ψ̂0|2Pm(zs)P̄m′(z̄s) (2.12)

we necessarily get zero. This is because the measure and ψ̂0 is invariant under phase rota-

tions zs → exp(iθ)zs if we do it on all the z simultaneously, while Pm(z) → exp(imθ)Pm(z).

This is related to a particular diagonal SO(2) charge inside the SO(6) R-charge of N = 4

SYM theory, which defines an N = 2 polarization.

Compared to the vacuum, these states have energy m, provided we redefine the zero

of energy so that E0 = 0. These states also have R-charge m. This is, the wave functions

we have constructed have essentially the same energy and R-charge as expected for a BPS

multiplet. Because N = 4 SYM is conformally invariant, one can also use the operator-

state correspondence. This correspondence states that for every local gauge invariant

operator of the theory in (Euclidean) flat space O, one can find a quantum state |O〉 of

the field theory compactified on S3. The correspondence further states that the conformal

dimension of O is the same thing as the energy of |O〉 with respect to the ground state of

– 8 –
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the theory on S3. The set of states we have obtained would have the same R-charge and

conformal dimension (energy) as elements of the chiral ring. Structurally, the chiral ring

is also built by gauge invariant homolorphic operators, where the F term constraints are

imposed. These are holomorphic functions on the moduli space of vacua of the theory, and

they would correspond exactly to symmetric holomorphic polynomials like P .

For the rest of the paper we will concentrate on studying the holomorphic wave func-

tions described above and we will treat them as exact wave functions. It would be inter-

esting if this could be proved exactly by using supersymmetry arguments.

2.1 Thermodynamic behavior of the N-particle wave functions

We now have a list of wave functions to analyze. They are all built by multiplying the

ground state wave function ψ̂0 by a symmetric polynomial of the variables zi. We now

want to find out what type of geometry these wave functions are associated to.

To begin, we want to study the ground state itself. We find that the square of the

wave function, which has a probabilistic interpretation, takes the following form

|ψ̂0|2 = exp

(

−
∑

i

~x2
i +

∑

i<j

log(|~xi − ~xj|2)
)

(2.13)

Notice the similarity between this probability function and a Boltzman distribution

exp(−βH̃) for a gas of particles in d dimensions, where β = 1 and H̃ =
∑

i ~x
2
i −

∑

i<j log(|~xi − ~xj |2, where the ~xi are the positions of the particles. This is, we notice

that we have a gas of particles confined by a harmonic oscillator well, and that also have

repulsive logarithmic interactions. If d = 2 this is a Coulomb gas of particles (a two

dimensional plasma) in a potential well. For higher dimensions this is a different problem.

If we are interested in a thermodynamic limit where N → ∞ (meaning N is taken to

be very large), then we can hope that the gas will settle to a preferred thermodynamic

configuration that will maximize the probability distribution, and that is well described by

a density of particles in d dimensions with some characteristic thermal fluctuations.

We would approach this thermodynamic limit replacing sums by integrals, and intro-

ducing a density of particles ρ(x). In this way the energy is given by

H̃ ∼
∫

(~x)2ρ(x)ddx −
∫ ∫

ddxddyρ(x)ρ(y) log(|~x − ~y|) (2.14)

subject to
∫

ρ(x)ddx = N (2.15)

and to ρ(x) ≥ 0 [3]. As is typical in thermal problems, we would first find the saddle point

of H̃ that minimizes the energy. This was done in detail in [8]. The main observation is

that we need to solve the following integral equation

x2 + C =

∫

ddyρ(y) log(|~x − ~y|2) (2.16)

– 9 –
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in the region where ρ has smooth support, and where C is a lagrange multiplier enforcing

the constraint. If d is even, and greater than two, then

(∇2
x)d/2 log(|~x − ~y|) ∼ δd(~x − ~y) (2.17)

so that under the assumption of smooth support, taking derivatives with respect to x and

integrating over y commute. If one uses this assumption, one applies ((∇x)2)d/2 on both

sides of the equation. After this procedure one obtains the following equation

0 =

∫

ρ(y)δd(x − y) ∼ ρ(x) (2.18)

This contradicts that
∫

ρ = N . So one must conclude that the particle distribution ρ has

singular support in the thermodynamic saddle point limit. For the case above, it was found

that due to spherical symmetry, one expects that the distribution is spherically symmetric

and singular ρ(~x) ∼ δ(|~x| − r). The saddle of this ansatz occurs exactly when

r =
√

N/2, (2.19)

essentially independent of d [8]. We can treat this result as a guess for the answer. As we

will see in section 5, our simulation proves that this is correct in the thermodynamic limit.

For the case of N = 4 SYM, we need the special case d = 6. In this case there are

three (matrices of) complex variables that we need. It is customary to call them X,Y,Z.

We have already used Xa as real variables. The notation we will follow is that X without

an index represents X1 + iX2. There are other simple symmetric polynomials P (X,Y,Z)

one might consider other than one.

For example, take a single trace polynomial of Z,

Pn =
∑

i

(z1
i )n = tr(Zn) (2.20)

the wave function ψ̂0Pn is an allowed wave function. So is ψ̂1 = ψ̂0(tr(Z
n))2 = ψ̂0P

2
n and

ψ̂2 = ψ̂otr(Z
2n) = ψ̂0P2n. These two states are distinct functions of the eigenvalues of

Z with the same energy and R charge, so they represent different states. What can we

say about these two wave-functions? Here we need some more intuition. Since we are

interested in comparing these wave functions with a gravitational dual configuration of

AdS, we will get our intuition of what these objects represent from the expected dictionary

of the AdS/CFT setup.

In the AdS/CFT dictionary established by Witten [5], each trace counts as a single

graviton, so one expects that at large N , for fixed n, the two states ψ̂1 and ψ̂2 (properly

normalized) are approximately orthogonal. This is, 〈ψ̂1|ψ̂2〉 ∼ O(N−1). The number of

traces counts approximately the number of gravitons, and one can check that the traces do

have an approximate oscillator algebra for a single matrix model, where a†n|α〉 ∼ Pn(Z)ψ̂α.

Here we have to assume this property, as we don’t know how to calculate the norm of the

corresponding states analytically.

Single graviton states on a given geometry do not correspond to classical states of

geometry. To get geometrical states, one would naturally expect that these are given by
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some type of coherent state. This is, our first guess for interesting geometric wave functions

is to take an expression of the form exp(
∑

n tna†)|0〉 with finitely many tn different from

zero.

However, we see that we have a problem with a naive extrapolation of Witten’s result

for this type of wave function. The reason is that

exp

(

∑

n

tnPn(Z)

)

ψ̂0 (2.21)

is not a normalizable state unless tn = 0 for all n ≥ 3, because the trace dominates over ψ̂0

for very large values of the eigenvalues of Z, z. Thus we can not do quantum mechanics

with such a state. What we need to fix this is good behavior at infinity, so that the wave

function is L2 integrable.

Let us define f(x) =
∑

n tnxn. With this convention,
∑

n tnPn(Z) = trf(Z). To cure

the bad behavior at infinity we can require that f have better behavior at infinity than any

term in the series expansion of f . However, f is a complex analytic function, so to have

such a property, f has to be multivalued.

The simplest behavior is for f(x) to behave logarithmically at infinity. This is just

thinking of a particular polynomial behavior of ψ̂/ψ̂0, and we know that such wave functions

are normalizable. The function f will then have a branch cut in the complex plane. However

ψ can still be single valued, as it depends on exp(if). Let us use instead

f ∼ m log(g(x)) (2.22)

where g is an arbitrary polynomial of x, and m is a parameter that tunes the strength of

the perturbation. For single valued wave functions, it should be an integer. For x small, if

g(0) 6= 0, we can expand log(g(x)) in Taylor series, and we can approximate any polynomial

f to arbitrary accuracy. Such a wave function would be given by

ψ̂0 det(g(Z))m (2.23)

We expect that these wave functions are the ones that are important for geometry. Let

us now consider a case where g(0) 6= 0, and where the first zero of g happens for x very

large (much larger than
√

N , the typical radius of the sphere).

One would find then that the numerical value of f is small for x ∼
√

N , and that f

is holomorphic in this region. As such, we can think of f as a small perturbation of the

confining potential, and that the saddle point of ρ will react by a small change.

We can again go to the thermodynamic limit, and we find that we now need to satisfy

the following integral equation

~x2 + C − f(z) − f̄(z̄) =

∫

ddyρ(y) log(|~x − ~y|2) (2.24)

where z = x5+ix6. Thus ∇2(f(z)+f̄(z̄)) = 0, because f is holomorphic. Again, assuming ρ

is smooth leads to a contradiction. This leads us to ρ being given by a singular distribution

as well. The hard problem is to determine the distribution ρ given f . For situations where
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f is considered to be small, we expect that there is no change of topology, but that the

geometric profile of the sphere gets deformed.

A more general analysis shows that

ψ̂0 det(g(X,Y,Z))m (2.25)

will behave the same way for g a polynomial in three complex variables, where the closest

zero of g to the origin is at distances much larger than
√

N . The factor of m is an integer

controlling the strength of the perturbation of the ground state geometry.

One can also consider situations where the zeroes of g are more generic and let us say

that these zeroes intersect the S5.4 One finds that the particles are repelled from the zeroes

of g, because the wave functions vanish there. Thus the support of ρ does not intersect

the zeroes of g, and the same arguments apply: f is holomorphic (and multivalued) in the

region of interest, but f + f̄ is a real single valued function whose Laplacian vanishes. We

expect in general that the description of all of these states corresponds to five-dimensional

submaniolfds of R
6 of different topologies.

It is interesting to ask the following qualitative questions: what are the allowed topolo-

gies of these submanifolds (let us say for fixed degree of g)? Do these manifolds have bound-

aries, or lower dimensional pieces? Are there universal features of topology transitions as

we vary g with fixed degree?

More quantitatively, we would like to know how the geometry of the submanifold

correlates with the exact details of the wavefunction. Particularly, how the density of

particles in the submanifold is related to other geometric properties of the embedding and

if there is interesting scaling near topology transitions. One would also like to understand

how finite N effects blur the topology transitions.

Our purpose in this paper is to show that these quantitative and qualitative ques-

tions about the particle distributions can be addressed numerically by simulating the wave

functions using a Monte Carlo algorithm.

Once these questions are understood (numerically) in the matrix model, one would

like to find the gravitational dual description of these questions. Our proposal is that

the geometric features discussed above correlate directly with the gravitational dual de-

scription and provide answers to quantum gravity questions for which there is no analytic

understanding of finite N effects. We will explain this correlation in the following section.

3. AdS duals to chiral primaries

Chiral primary operators by definition are BPS objects. Their main property is that their

conformal dimension ∆ is equal to their R-charge, J . These operators are related to BPS

states for the field theory compactified on S3. The superconformal algebra guarantees that

J and H commute. One can show that the twisted Hamiltonian H̃ = H − J is positive

semi-definite in the free field limit and that only BPS states are annihilated by H̃. The

4Determinant operators are also related to giant gravitons in the AdS/CFT setup [17]. Thus one can

identify the integer m above with the number of D-branes in this case
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classical solutions of H̃ = 0 are given exactly by constant configurations of the fields on S3

and they are identical to the moduli space of vacua of the N = 4 SYM theory [3].

On the gravitational side, one thinks of J and ∆ as particular isometries of AdS5 ×
S5 [2]. For a point particle moving in this space ∆ is the energy and J is the angular

momentum of the particle motion. Setting ∆ = J tells us that the energy is equal to the

momentum. This is, the particle is massless in ten dimensions. For type IIB string theory,

all massless particles belong to the supergravity multiplet under supersymmetry transfor-

mations. Thus all BPS configurations with this amount of supersymmetry and with small

quantum numbers should correspond to a gravitational excitation of the AdS geometry.

This is, one should be able to understand all these supersymmetric configurations in terms

of supergravity. Because the different quanta respect the same supersymmetry, in principle

it is possible that the gravitational attraction between two quanta is compensated exactly

by exchange of the dilaton, giving rise to a non-linear superposition principle for solutions

to Einstein’s equations. The fact that the chiral primary operators have a ring structure

(the chiral ring) tells us that is the expected behavior from the N = 4 supersymmetric

field theory. Thus, it should be possible in principle to find fully non-linear solutions to

the Einstein equations that respect the supersymmetries.

For large quantum numbers, one enters into the very non-linear regime of the classical

gravity theory and it is possible to find new topologies and configurations that at first sight

do not seem to be described by a gravitational background.

The simplest such configurations arise for BPS states with J ∼ N , such that the

angular momentum is only happening in an SO(2) subgroup of the SO(6) R-charge. These

new semiclassical configurations correspond to giant gravitons that respect half of the

supersymmetries. Giant gravitons are D3-brane configurations in AdS5 × S5 that respect

some of the supersymmetries, in this case the same supersymmetries that ordinary gravitons

respect. Giant gravitons were introduced in [18] as the gravitational dual explanation for

the fact that traces of N ×N matrices Z, are not algebraically independent. Namely, that

tr(Zn+1) ∼
∑ ∏

i

tr(Zk
i ) (3.1)

with ki ≤ N . We are also required to have
∑

ki = N . This means that the description

of states as a Fock space in terms of traces is truncated. A more complete analysis shows

that there are two types of giant gravitons. Some grow into the S5 direction, and some

grow into the AdS direction [19, 20].

Their dual description in terms of field theory operators was conjectured in the

works [17, 21]. The giant gravitons growing in the S5 are related to subdeterminant op-

erators. These subdeterminants are the coefficients of the expansion of det(Z + x). These

are special cases of Schur functions related to completely antisymmetric representations of

U(N). The giant gravitons growing into the AdS were then conjectured to be related to

Schur functions of completely symmetric representations of U(N).

As we saw in the previous section, it was convenient to introduce determinants to build

coherent states. Here we see that determinants are also interesting because of their relation

to giant gravitons. We will comment more on this relationship further.
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The description of [21] was shown to be equivalent to an integer quantum hall droplet

picture of two dimensional free fermions in the lowest Landau level with a confining

quadratic potential [6]. In the fermion description, the two types of giants correspond to

the holes and particles of the Fermi liquid. The giant gravitons corresponding to particles

are naturally related to eigenvalues (this was also suggested in [20]).The edge fluctuations

are the ordinary gravitons. The particles and holes dissolve into edge fluctuations if their

energy is of order
√

N . In this regime, the corresponding giant gravitons are very small,

and all the relevant physics is captured by focusing on a plane wave limit geometry. In this

case this would be the maximally supersymmetric plane wave [22]. (See also [23]).

It is natural to expect that when we place many mutually supersymmetric D3-branes

moving on AdS5 × S5 on top of each other, that we will be able to replace the brane stack

by a near horizon geometry free of singularities (these are non-dilatonic branes [24], and

the AdS5 × S5 global geometry of [2] is a typical such example). In the half-BPS case,

in the fermion language, placing the fermions as near to each other as possible, but away

from the edge, produces new topologies of the droplet. The same is true if we work with

many holes on top of each other. It is also natural to expect that we can turn on coherent

states of gravitational perturbations of a system. These coherent states are edge waves of

finite amplitude. Thus one expects that any macroscopic shape of droplets corresponds to

a gravitational configuration.

This possibility of a simple fermionic description in field theory motivated Lin, Lunin

and Maldacena to try to classify all solutions of supergravity that respect half of the super-

symmetries of AdS5 × S5 and that have the same isometries as the unbroken symmetries

that the dual states preserve [14].

The metric needs to have the following symmetries: there is an unbroken SO(4) because

we chose spherically invariant configurations on the S3 boundary. One has an unbroken

SO(4) subgroup of the R-charge (the little group of the highest weight state), because we

only chose perturbations with J being non-zero in an SO(2) subgroup of SO(6).

There is an additional unbroken translation symmetry because ∆ = J , so there is one

extra generator of the superconformal group that annihilates the state and commutes with

the two SO(4) symmetries.

The natural ansatz for a space with this symmetry is of the form

ds2 = A(x)dΩ2
3 + B(x)dΩ̃2

3 − C(x)(dτ + Vi(x)dxi)2 + gijdxidxj (3.2)

namely, a fibration with two three spheres Ω3 and Ω̃3, and a killing vector ∂τ . This leaves a

three dimensional space of the x variables where all the non-trivial dynamics is happening.

After imposing the additional requirement of supersymmetry, the metric simplifies further,

and one finds a preferred coordinate system for the remaining three variables, that is

described by x1, x2, y. The full metric is then given by

ds2 = −h−2(dt + Vidxi)2 + h2(dy2 + dxidxi) + yeGdΩ2
3 + ye−GdΩ̃2

3 (3.3)

where h−2 = 2y cosh G, and V can be solved for if G is known. In the conventions of [14],

one uses the auxiliary function

z =
1

2
tanh G (3.4)
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and it was shown that z satisfies a linear partial differential equation

∂i∂iz + y∂y

(

∂yz

y

)

(3.5)

There is a potential conical singularity in the metric at y = 0. This is avoided if z|y=0

takes the value ±1/2. One then finds that h is finite and that the metric is regular. We

impose these conditions as boundary conditions of z at y = 0. We see that the solution is

determined by a two coloring of the x1, x2 plane (the regions where z = ±1/2, let us call

them black and white). This is very similar to the two dimensional picture one obtains

from the quantum hall droplet.

The interesting thing to notice here is that y = 0 corresponds to a degeneration of

one of the two three spheres to zero size. If one matches the supergravity solution to the

quantum hall picture, the regions that have particles in them correspond to the locus where

Ω3 (the sphere of AdS5) has vanishing size (the black regions).

For the vacuum state, AdS5 × S5, in global coordinates, we have that

ds2 = − cosh2(ρ)dt2 + dρ2 + sinh2 ρdΩ2
3 + dΩ2

5 (3.6)

and the locus where the radius of the Ω3 shrinks to zero size is exactly the S5 at the origin

of AdS5, namely ρ = 0.

Going back to the quantum hole analogy, if one considers a probe giant graviton of

the particle type, one adds a small black disc outside the black region. In this disc the

same S3 that shrinks at the bottom of AdS, shrinks to zero size. Thus we can identify

the locations of the AdS giant gravitons with the regions where the S3 of the conformal

boundary shrinks to zero size. For the other giant gravitons (the holes in the quantum hall

picture), it is the other S3 that degenerates to zero size.

A more general metric for the 1/8 BPS states would have lower symmetry. Using

the AdS/CFT dictionary, the states we need in the field theory are constant on the three

sphere, as we have discussed previously. This symmetry would correspond in supergravity

to an isometry of the metric. Thus we would still preserve the SO(4) isometry, and this

requires the metric to have a three sphere fibration. One would also have a Killing vector

associated to the BPS bound.

This would give us

ds2 = −A2(dt + Vidxi)2 + BdΩ2
3 + gijdxidxj (3.7)

This reduces the full gravitational problem to a system of non-linear partial differential

equations in six dimensions. Such a possibility has been investigated in [25], and in a slightly

different context in [26]. One would expect that there are regions where this three-sphere

fibration degenerates to spheres of zero size. These should be the locations where the giant

gravitons that grow into AdS are located.

3.1 Proposal for comparison of matrix models and gravitational physics

So far, in the gravity side, we have noticed that the regions where the metric is interesting

correspond to the locus where giant gravitons that grow into AdS are located. Fortunately,
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these giant gravitons can also be identified with the eigenvalues of the matrix model itself

under the AdS/CFT dictionary [20, 6, 3].

Comparing to our previous analytical results of the CFT side in section 2, we noticed

that for semiclassical states the eigenvalues of the matrices form well defined submanifolds

in the six flat dimensions. It is natural to identify the singular eigenvalue distributions

obtained from the field theory (in the large N limit) with the geometric locus where the

size of the S3 fiber of the 1/8 BPS geometry vanishes. This S3 survives in the conformal

boundary of AdS5, and it represents the S3 on which the field theory has been compactified.

One also expects that there is locally a similar coordinate to y in equation 3.3, such

that y = 0 is the degeneration locus. In the case of the ground state, namely AdS5 × S5,

the role of the y coordinate is played by the radial direction of AdS, and the locus y = 0

is the bottom of the AdS potential well.

In the eigenvalue picture, the y coordinate can then be thought of as a transverse

coordinate to the eigenvalue distribution in flat R
6.

For the case of AdS5×S5, the six dimensional space corresponds to the radial direction

of AdS and the S5 together. One can map this to the region outside the five-sphere

distribution of eigenvalues. It is easy to convince oneself that exciting one eigenvalue in a

BPS manner removes it from the five sphere and places it outside the S5 distribution but

not inside.

Our proposal is that the support of the eigenvalue distribution represents exactly the

degeneration locus of the three sphere in the full ten dimensional metric. As such, one can

compare the degeneration locus of exact supergravity solutions with their dual description.

The tests can be both qualitative, at the level of comparison of gross topological features,

and they can also be more quantitative. For that, we need a proposal on how to extract

metric data from an eigenvalue configuration.

The natural way to do this is to add small (but not massless) strings in a particular

region. The length of the string serves as a probe of energy. It is also natural to add

strings in the eigenvalue problem, similar to the work [8], by turning perturbatively the

off-diagonal modes of the matrix model. This gives us, to first approximation, the induced

flat space metric on the submanifold of the eigenvalue distribution.

One can in principle compare the energies of these two different descriptions of the

same objects, in the degeneration locus. In the gravity setup, one has to take into account

that time is warped to make the comparison. The comparison of metrics seems to give

gGrav
ij /A2 ∼ gInd

ij (3.8)

Our analysis suggests the following conjecture: for the 1/8 BPS metrics with asymp-

totic AdS5 ×S5 boundary conditions, the classifications of metrics can be reduced to a six

dimensional problem that is a base of an S3 × R fibration. This six dimensional (base)

space should be diffeomorphic to an open connected subset of R
6 with a five-dimensional

boundary. The region of R
6 that is carved out ends on the eigenvalue distribution in the

dual field theory representation, and contains the region around infinity. The fact that the

base is diffeomorphic to a subset of R
6 is a very strong topological constraint.

– 16 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
1

4. The Monte Carlo algorithm

As we described in section 2, we are interested in computing the distribution of particles

for an auxiliary statistical mechanical system of particles in R
6 (or in complex coordinates,

particles in C
3) constructed as follows. We start with a wave function ψ̂ of the form

ψ̂ = exp

(

−
∑

i

1

2
~x2

i +
∑

i<j

log |~xi − ~xj|
)

P (X,Y,Z) (4.1)

where P is a holomorphic function, invariant under permutations of the particles labeled

by i. In particular, the ground state is the case for P = 1. In general, for geometric states

we expect that log P (X,Y,Z) ∼ m
∑

i log g(xi, yi, zi), where m is an integer and g is a

polynomial in the complex coordinates with complex coefficients.

The wave function leads to a probability distribution

|ψ̂|2 = exp

(

−
∑

i

(~x2
i − m[log(g(xi, yi, zi))−log(ḡ(x̄i, ȳi, z̄i))]) +

∑

i<j

log |~xi − ~xj |2
)

(4.2)

= exp(−βH̃) (4.3)

that is equivalent to a Boltzman distribution for a gas at β = 1 and with

H̃ = −
∑

i

(~x2
i − m[log(g(xi, yi, zi)) + log(ḡ(x̄i, ȳi, z̄i))] −

∑

i<j

log |~xi − ~xj|2 (4.4)

The term
∑

i(~x
2
i−m[log(g(xi, yi, zi))+log(ḡ(x̄i, ȳi, z̄i))] can be interpreted as a confining

external potential, that is asymptotically quadratic. The term that sums log |~xi − ~xj |2 can

be interpreted as repulsive logarithmic interactions between the particles. We are also

required to study the system in the thermodynamic limit N large, where N is the number

of particles in the system.

One expects on general grounds that the system will settle to some (thermal) equilib-

rium between the confining potential, the repulsion of the particles and with some extra

thermal fluctuations. We want to study the (density) distribution of the particles in R
6,

and we also want to measure the fluctuations around the equilibrium configurations.

The equilibrium configuration is a typical configuration of the particles that dominates

this thermal ensemble. For coarse grained observables (like the typical number of particles

in some sufficiently large specified region), a typical configuration is enough to characterize

the ensemble accurately. Also, if one has a sufficiently symmetric situation, measuring on

a single typical configuration can also let us measure thermal fluctuations of the ensemble

by using symmetry operations to obtain more measurements out of a single distribution.

Our studies for this paper will only involve a special case of the set of distributions

above, where g(xi, yi, zi) = xi, and m is either zero (the ground state) or some other

positive integer.

For the case m = 0, we expect that the distribution will have all particles forming a

round five sphere shell, at a distance of

r ∼
√

N/2 (4.5)
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with some thermal fluctuations, and in principle 1/N corrections to the radius [8]. The

thermal fluctuations are also a 1/N effect. This is because in the large N counting of

t’Hooft, 1/N serves as a measure of ~, and our probability distribution arises from a

quantum wave function. The quantum fluctuations of a wave function are typically an effect

of order ~, and they translate to thermal fluctuations of our ensemble. In the gravitational

theory, 1/N effects are quantum gravity corrections to classical results.

Thus, in principle, we can measure some quantum gravity effects/corrections by looking

at these fluctuations in the dual CFT description, that has been simplified to this thermal

ensemble.

We use a standard Metrtopolis algorithm for a Markov process that navigates between

the different configurations of particles in R
6. Between successive configurations A,B, we

always accept the B configuration if H̃B ≤ H̃A, and if H̃B > H̃A, we generate a random

number s and compare s to exp(−β(H̃B − H̃A)). If s is smaller than this quantity, then

we accept the B configuration. Otherwise we reject it.

Our algorithm to compute the thermal ensemble begins by setting up a random dis-

tribution of particles in six dimensions. We use the number of particles N to set the size

of this distribution. We disperse the particles randomly on a box of size 2r, where r is

the expected radius of the distribution, with each coordinate generated randomly in this

range.

We generate new trial configurations by moving one particle at a time, ~xi → ~xi + δ~xi.

The movement δ~xi is generated randomly by varying the coordinates in a range ±δ for

each coordinate. After moving one particle, we apply the metropolis criterion, and we

cycle between the particles in order. After some number of iterations, we make δ smaller.

This is designed to converge faster to a near equilibrium configuration, and then we use

the smaller value to ensure that reasonable thermal fluctuations are generated somewhat

accurately. After some prescribed number of iterations I we stop the calculations and look

at the final configuration and consider it to be typical. We usually have half the iterations

at one value of δ, and then we make δ smaller by a factor of 5.

The typical values of N that we use range between 100 and 20000. We found that

moves with δ of order 2 − 5 give good results. We used typically 300 to 2000 iterations

per particle. Experimentally, we were finding convergence of results after about 100 − 150

iterations. Our computer code is a C program. We compiled our codes with gcc in various

Apple computers. We performed all our calculations with double precision, and we used

the GNU scientific library random number generators to insure good statistical quality of

the pseudo-random numbers.

The typical running time oscillated between 5 minutes and 48 hours depending on the

number of particles and iterations, as well as on the speed of the computer processor that

was used. The number of floating point operations that we perform scale roughly as IN2,

so making N large is computationally expensive.

4.1 Taking the large N limit

We have found that taking N large in the simulation directly is difficult (computationally

expensive). If the configurations are going to be thermodynamic, it makes sense to coarse
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grain the dynamics in order to increase the effective value of N without increasing the

number of computations significantly. The simplest way to do that is to assume that in

the simulation each particle counts for M particles near their vicinity, so that the effective

N is NpartM , where M is a multiplicative factor associated to this coarse graining. This

is taken care of by increasing the strength of the repulsive interactions by a factor of M .

This is, we are simulating instead

exp(−βH̃) = exp



−
N

∑

i=1

(~x2
i − m[log(g) + log(ḡ)]) +

∑

i<j

M log |~xi − ~xj |2


 (4.6)

Roughly, particle i feels the effect of M particles at the location of particle j, but we are

not averaging the position of particle i over M particles. We need to verify that this is a

good approximation for the questions we are asking.

We do this by comparing distributions generated with the same Neff , but with different

values of M (the coarse graining factor). If we can show that numerically the answers are

similar, then we can take Neff to be large by keeping the number of particles fixed and

varying M . We expect that this would induce errors of order 1/N , where N is the number

of particles in the simulation, not Neff = NM , because we are ignoring the M − 1 particles

in the vicinity of the i − th particle that i is not being affected by. So long as we can

show that our errors are of this order, taking Neff to be very large is possible and we can

compare to the thermodynamic limit.

5. Results for sphere and comparison to theory

In the following tables, we show the numerical results for simulations. In particular we

are able to show that in the large N limit we approach the expected theoretical result

from equation 2.19. It is also evident that the effects of coarse-graining do not affect the

calculations of the radius of the sphere substantially, and this allows us to extrapolate to

relatively large values of Neff = NM by taking M large.

Here we also present some results of varying the size of the motions of the particles in

the Monte-Carlo algorithm. There is no substantial difference between runs where we take

the particles and move them by bigger or smaller steps.

We can also plot a typical configuration of particles projects into the 1,2 plane, for

a simulation with N = 1000. The projection looks very round, and it is noticeably more

dense in the center than in the outer edges, exactly as one would expect.

We can also show a histogram of the radius of each particle. It is evident by sight that

the approximate radius of each particle is close to the expected value of r ∼ 22.36.

Our results comparing the simulation with coarse-graining to the full simulation for

large numbers of particles are in the table 1.

In the table we calculate the radius of the distribution by using

rdist =

√

√

√

√

1

N

N
∑

i=1

~r2
i (5.1)
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N M Neff rdist rth Relative difference

100 1 100 7.204 ± 0.039 7.07 +1.9%

200 1 200 10.094 ± 0.034 10 +.9%

100 2 10.068 ± 0.052 +0.7%

400 1 400 14.212 ± 0.031 14.142 +0.5%

200 2 14.162 ± 0.056 +0.1%

100 4 14.187 ± 0.0465 +0.3%

800 1 800 20.038 ± 0.014 20 +0.2%

400 2 20.025 ± 0.021 +0.1%

200 4 20.0165 ± 0.023 +0.1%

100 8 19.928 ± 0.041 -0.4%

1600 1 1600 28.315 ± 0.013 28.284 +0.1%

800 2 28.305 ± 0.012 +0.1%

400 4 28.301 ± 0.028 +0.1%

200 8 28.252 ± 0.032 -0.1%

Table 1: Comparison of coarse graining to full simulation

and we are showing the theoretical value on the right,
√

Neff/2. We also show the relative

percent difference (rdis − rth)/rth to the theoretical value. The error bars are based on

samples of 10 configurations per distribution, where we quote the standard deviation of

a sample around the mean value. Here, it is useful to notice that just like in the case of

spherical membranes in Matrix theory [29], there are various possible definitions of the

radius once the statistical fuzzyness of the sphere is taken into account. The one we chose

seems like a sensible definition, as it is given by

r2 ∼ 1

N
tr( ~X2) (5.2)

the simplest matrix model correlator that one could use.

Our error bars are the statistical errors of our sample, but they do not include an esti-

mate of systematic errors of the code, or show that correlations between different samples

associated to the same distribution are absent. Our purpose in this paper has been to

establish that this type of simulation is a viable avenue to understand geometrical infor-

mation using a very simplified matrix model analysis, and this requires us to take Neff as

large as possible.

As can be clearly seen, for the most part the effect of coarse graining is consistent with

a full simulation, and it tends to lower the value of rdist with respect to the full simulation.

This is expected, as in our coarse graining procedure we are ignoring the self repulsion of

the eigenvalues that have been coarse grained into a single one. This is a systematic effect

that is of order M/Neff = 1/N and tends to lower the size of the distribution (there is a

slightly smaller net effective repulsion). We should also notice that the size of the error

bars in the radius distribution are very similar between the coarse-grained distribution and

the full simulation. Also, the results are close to the expected theoretical result. Looking
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M Neff rdist rth Relative difference

1 400 14.213 ± 0.031 14.142 +0.5%

2 800 20.025 ± 0.021 20 +0.1%

4 1600 28.301 ± 0.028 28.284 +0.1%

10 4000 44.689 ± 0.255 44.72 -0.1%

20 8000 63.178 ± 0.027 89.44 -0.1%

50 20000 99.890 ± 0.012 100 -0.1%

70 28000 118.176 ± 0.025 118.32 -0.1%

100 40000 141.237 ± 0.018 141.42 -0.1%

1000 400000 446.663 ± 0.027 447.21 -0.1%

Table 2: Coarse grained distribution for large N limit.

at the simulations with M = 1, we notice that as N gets larger, the statistical error bars

in the radius tend to go down in size. For N = 1600, the relative error is 0.1%.

Table 2 shows a simulation with N = 400 where we just change the coarse-graining

multiplicity M through various values. The relative difference is of order 0.1% ∼ 1/1000

for large values of Neff . This is smaller than 1/400 by a factor of 2, a systematic M/Neff

effect. We can estimate this effect by comparing
√

NM/2 to
√

(N − 1)M/2, the first is

the effective radius one would get for Neff = NM , while the second radius is the mean

field theory (the particle i feels the repulsion of (N − 1)M particles and the scaling of the

problem. This shows a relative difference of order −1/2N ∼ −1/800, exactly like we are

seeing in the data. Our results are therefore consistent with the theoretical large N limit

when we take this systematic effect into account.

5.1 Density fluctuations and 1/N counting

As we have shown above, our numerical results seem to be converging to the radius of the

particle distribution that is obtained from the saddle point approximation. It is convenient

also to test the density fluctuations along the five-sphere, to test how spherically homoge-

neous it is. One would also like to understand how thin is the sphere, as in the saddle point

limit we are suppose to be comparing it to a delta function distribution at fixed radius.

To see whether the system has rotational symmetry, one can for example take a col-

lection of points generated this way and project them onto the 12 plane. This can give us

an idea of how spherically symmetric the distributions are. We present here an example

with N = 2000 in figure 1.

By inspection, the distribution looks fairly circular. We should also remember that

this is projection of a 5-sphere embedded in flat six dimensions. This gives us an image of

the 5-sphere as a 3-sphere fibration over a disc. The radius of the S3 fiber is r2
3 = (r2−r2

12)

in terms of the (r12) radial coordinate, and r, the radius of the distribution in 6 dimensions.

The number of points for each sphere element scales with the radius of the 3-sphere, so the

density of points at the center has to be much higher than at the edges. This is observed
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Figure 1: Projection onto the 12 plane of a typical configuration of 2000 particles.

in the figure. This makes it hard to estimate how spherical the object is, because our sight

perceives mostly the edges of the disc, where the density of coverage is small.

To do better work, one would want to count the number of particles in cones of

given angles. However, this can depend very much on how one chooses to slice these

angular regions and how one triangulates the six sphere into smaller pieces. Instead, as

is usual in other situations, one would much rather consider the multipole expansion of

the distribution. Since the particles are all expected to be essentially at the same radius,

the multipole expansion will give us directly the angular fluctuations of the density into

different multipole moments.

Here, we will just calculate the quadrupole moment squared of the distribution. To

ensure that we are doing things carefully, we can expand the square of the quadrupole

moments on all 2-planes.

The typical quadrupole moment (along the 12 plane lets say) can be written as Q ∼
ℜe(tr(Z2)) where we choose Z = X1+iX2. We want to normalize the quadrupole to reflect

just the angles and not the radius, so we should use

Q = ℜe(tr(Z2/r2)) (5.3)

Because of spherical symmetry, the average quadrupole will be exactly zero. But to

understand the typical fluctuation, we would want to calculate

Q2 ∼ 〈tr(Z̄2/r2)tr(Z2/r2)〉 (5.4)

These are typical correlators in matrix models. In the large N limit, formal develop-

ments around perturbative constructions lead to a 1/N2 expansion into non-planar dia-

grams, so long as one can think of the solution of the matrix model as a resummation of a

perturbation series. We should notice that the Monte-Carlo simulation is non-perturbative
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N Q2

100 2.74

400 2.56

800 3.28

1200 2.82

1600 3.21

Table 3: Quadrupole moment table

in nature, so it is possible to observe different behavior than the expected perturbative

result in the simulation.

In our case, we have that the radius r is of order
√

N , so that a correlator tr(ZZ̄) scales

like N2, and tr(ZZ̄)2 would scale like N4. If our results can be understood in this type of

framework, we would expect that the numerical values of various objects will have a 1/N

expansion. The tree level value of tr(Z2) is zero, so for |tr(Z2)|2 we expect a result which

is suppressed with respect to N4 by a factor of N2. If we correct for the normalization of

the radius, as in equation 5.4, so that we can compare different droplets of varying N , we

expect that these correlators are all of order one. This can be tested in our numerically

generated distributions for various values of N . This is shown in table 3.

The Q is generated by averaging over quadrupoles in various planes. For each config-

uration of eigenvalues, there are 20 linearly independent quadrupole moments.

In practice we calculate the six numbers

Sij = tr(X2
i − X2

j )/r2 (5.5)

and the fifteen numbers

Qij = tr(2XiXj) = tr

[

1

2

(

(Xi + Xj)
2 − (Xi − Xj)

2
)

]

(5.6)

and then we average their squares, to obtain Q2. These 21 numbers contain all 20 inde-

pendent quadrupole moments of a single distribution of particles. We then average these

over ten different distributions with the same number of particles.

If instead we had a gas of uncorrelated particles at constant radius, the total quadrupole

moment would scale with N1/2 where N is the number of particles. The matrix model

behavior signals a highly correlated system compared to a free gas. In this sense, it can

be considered as a type of liquid (the same gas model in two dimensions is the particle

distribution associated to a quantum hall fluid).

Indeed, our table 3 shows that the total quadrupole moments do not vary substantially

between various values of the number of particles and that the numerical values seem to

agree with the expectations of large N matrix model statistics. Also notice that any growth

in the quadrupole moment with increasing N is at best marginal. We also don’t have error

bars associated to these numbers Q2: we don’t have enough information to compute them.

The table should be interpreted as providing numerical evidence for the expected large N

scaling of a matrix model.
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Figure 2: Binned radial data for one sample of N = 2000 on 50 bins between 27 and 37, with an

expected radius r ∼ 32

It should be noticed that the multipole expansion in angular coordinates would give

us correlators of the form

M2 ∼ 〈tr(Z̄n/rn)tr(Zn/rn)〉 (5.7)

while some multipole correlation functions would be of he form

M2 ∼ 〈tr(Z̄m/rm)tr(Z̄n/rn)tr(Zp/rp)〉 (5.8)

and in principle can be compared to three point functions in the conformal field theory,

and via the AdS/CFT, to supergravity. These three point functions for half-BPS states

were first studied in detail in [30], and suggested various non-renormalization theorems.

These have been analyzed in more detail in [31].

To do a useful numerical comparison we expect to need a large statistical sample, as

these normalized correlators will be expected to be of order 1/N . Such a statistical sample

is beyond the scope of the present paper. This is currently under investigation [32].

Similar to the angular fluctuations of the density described above, one can also slice

the points radially and try to understand the radial distribution of particles in more detail.

In particular, one would like to determine if the radial distribution of a single particle

is approximately Gaussian or not. Naively, non gaussian behavior should be suppressed

by some (possibly fractional) powers of 1/N and could correspond to some non-trivial

quantum gravity effect.

We find that the typical width of the radial distribution of particles is always of order

1 (0.86 in the example), while the radius is of order
√

N . We also find no noticeable

deviation from a gaussian distribution for the distribution of the radii for a simulation

with N = 2000. this is encoded in the figures 2 and 3.

Finally, we can also look at the radii of the individual particles in the order they were

generated. This is shown in figure 4

In this sense, in the large N limit the numerical simulation of the density approaches

a delta function, as the width of the distribution of particles in the radial direction goes

down relative to the radius of the five-sphere.

6. One hole states

So far we have done a systematic analysis of the basic properties of the ground state wave

functions for various N . Our results so far suggest that it is possible to work a detailed
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Figure 3: Comparison between simulation and a Gaussian fit by bin.

Figure 4: Typical radii for a configuration of individual particles (the data is by particle number)

comparison between the numerical results of a Monte-Carlo analysis and the expectations

that one has from a theoretical analysis of a formal 1/N expansion.

We would now like to analyze other configurations that in gravity could correspond

to a non-trivial topology change. In particular, it is interesting to analyze the typical

distribution of eigenvalues for the simplest LLM geometry whose topology is different than

the ground state.

In particular, one can consider geometries that correspond to an annulus in the LLM

plane. These are conjectured to be the result of condensing H ∼ N maximally giant

gravitons associated to some particular half BPS orientation. A single such giant graviton

is believed to be given by the operator det Z, and H such gravitons would correspond to

the operator detH Z. In the matrix model of eigenvalues, these would correspond to a wave

function

ψ̂H ∼ ψ̂0 det(Z)H (6.1)

and to an associated thermal ensemble

|ψ̂|2 = exp

(

∑

(−~x2 + H log((x1)2 + (x2)2)) +
∑

log(|~xi − ~xj |)
)

(6.2)

Thus the particles are repelled from the locus x1, x2 = (0, 0). In two dimensions, such wave

functions correspond to an inner circle of the annulus with a radius that scales with
√

H,

independent of N .
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Figure 5: The plot shows the average radius of the particles inthe 3456 directions for binned data

in the 12 plane. The data shows a simulation with 2000 particles and H = 300, in a 40 × 40 grid.

Also, from the LLM intuition, one expects that in the LLM plane the region with

eigenvalues (particles) is the degeneration locus of the S3 of the boundary. At the edges

of the droplets, both the S3 of the boundary and the S3 associated to S5 being written

as a fibration over a disc vanish. Thus we expect that if our particle distributions are to

match the LLM topologies, then the projection of the particles to the (1, 2) plane will form

an annulus, and at the edges, the size of the sphere in the orthogonal directions should

vanish. As described previously, matching to an exact LLM metric is difficult, as it is not

clear what is the coordinate change that relates the eigenvalue distributions to the LLM

coordinates, and this map could be rather complicated. However, matching the topologies

of the degeneration locus of the boundary S3 should be straightforward.

As can be seen from figure 5, the distribution of particles projected on the plane forms

an annulus shaped distribution of particles, exactly as expected from a naive analysis of

the topology of such an LLM droplet. In this sense, we are observing directly a topology

change. However, the simulations do not show the expected closing of the distribution of

particles into a donut, but rather there appears to be a boundary to the surface geometry

that the particles describe. We do not know at this moment if this is a feature of the physical

system we are studying, or if we need to improve the code to focus on the region where the

deviation from our naive intuition is taking place. This is currently being investigated. For

an alternative picture, we can plot the radius on the 12 plane with respect to the radius in

the 3456 plane, as shown in figure 6.

If it is a new feature of the system, we need to explain the physics associated to it,

and we may need to rethink some issues regarding what we mean by geometry associated

to these droplets. We believe this is a very interesting result of the simulations we have

done. Below, we will present evidence that this type of simulation is behaving like expected

in terms of the AdS intuition for the size of the hole in the center, giving us confidence
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Figure 6: r12 vs r123456 for an N = 2000 particle distribution, with H = 30. Notice the low

number of points for r12 large, relative to r12 small: this is an effect of phase space for each type of

configuration.

that the distribution ending “in the wrong place” may be a physical feature that has to be

considered seriously.

It is customary to compare LLM droplets directly with distributions of fermions asso-

ciated to the lowest Landau level in two dimensions for a given wave function. That is the

simplest description of all half-BPS states [6, 14]. Similarly, various studies of superstar

geometries exploit this correspondence [33].

For such wave functions, the size of the center hole in the Fermi-liquid picture is

determined by the number of hole-particles that one places at the center of the ring, and

this size is independent of the droplet.

In our numerical simulations, we see a dependence of the size of the hole in terms of

the total number of particles. This is shown in the table 4. The way we determine the

inner radius of the distribution is by averaging the five smallest values of R12. The choice

of 5 is arbitrary and it is done to reduce large fluctuations of a single particle. The error

in the simulations seems to be dominated by systematic errors, and we don’t know how to

estimate them, but we believe they can be bound by ±1 on all entries. Changing the coarse

graining factor has an effect on the values obtained, and it is not clear how to compare

different distributions associated to the same number of particles Neff , unless we put large

systematic error bars of that size. Also, we have no good theoretical understanding of the

fluctuations of the distributions. We can not compare results to a large N limit saddle

point either, as we have no theoretical prediction of what the saddle point will look like.

We can analyze the data In a log-log plot, as shown in figure 7 to test scaling, with N

at H fixed. The data can be fit linearly to very good accuracy to a slope of 0.26, which

seems very close to 1/4.

Scaling of the saddle point suggests that the hole radius should be fixed relative to the

size of the distribution if we keep H/N fixed. In this fashion, we expect that rin ∼ g(H/N)

is a function of H/N . For H/N small, we seem to obtain simple scaling behavior.

Thus, we expect that the radius of the hole is roughly given by r ∼ (HN)1/4, by

guessing a simple rational exponent near the slope we found.
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N Rin

400 8.45 ± 1

600 9.26 ± 1

800 10.0 ± 1

1200 11.1 ± 1

1800 12.57 ± 1

2400 13.34 ± 1

Table 4: The above shows simulations with varying numbers of particles and fixed number of

maximal giant gravitons (H = 30). The right hand side is computed by averaging the five lowest

values of R12, the radius in the 12 plane.

6.25 6.5 6.75 7 7.25 7.5 7.75

2.3

2.4

2.5

2.6

Figure 7: Log-Log data of size of central hole, as read from table 4.

This result does not mean that the comparison with free fermion droplets are wrong.

Rather, it shows that the LLM plane can be embedded very non-trivially into the R
6,

with an as-yet unknown change of variables determining this embedding. It is also worth

pointing out that the LLM metric is not associated to a flat metric on the LLM plane, but

that there is also a warping by a function h2, as written in equation 3.3. As discussed in

section 3, matching to an LLM geometry needs to resolve these changes of coordinates.

This factor of N1/4 is reminiscent of the scaling of the string length. Indeed, we can

motivate this comparison in a straightforward fashion. If we assume that we have H D3-

branes, where H ≪ N , we can think of the H branes locally as flat D3-branes embedded

in flat space, with small back reaction far away from the branes. We would find then that

the near geometry will start differing from a flat metric in a region of size H1/4.

This is because for H D3-branes, the metric of the geometry of the D3-branes in flat

space is given by [24]

ds2 ∼ f−1/2dx2
|| + f1/2(dr2 + r2dΩ2

5) (6.3)

with

f = 1 +
4πg2

Y MH(α′)2

r4
(6.4)

where r is a radial direction transverse to the D-brane. The region where f differs substan-

tially from one is of order r ∼ H1/4, in string units. To be more precise, the region where

we expect a discrepancy from flat space is of order H1/4 in Planck units. Indeed, when we
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express α′ in terms of lpl, the factors of g2 will cancel. This can be traced to the fact that

the tension of the D3 brane does not depend on gs in units of lpl.

Now, since in the dual AdS geometry to the N = 4 SYM with gauge group U(N) we

find that lpl scales like N1/4, we find that having an inner radius that scales with (HN)1/4

is exactly right to match the intuition from AdS. We find this way that the matrix model

we have written knows about the Planck scale in a way that can be measured geometrically.

This gives us evidence that the numerical results are capturing geometrical data as-

sociated to such a collection of H D3-branes rather precisely, even if the comparison to a

particular LLM metric is hard.

7. Conclusion and prospects

In this paper we have explored how certain aspects of the AdS/CFT correspondence can

be studied numerically using Monte Carlo methods. We believe that we have shown that

this is feasible: we can explore the large N limit effectively with modest computational

resources. The main simplification that we have used is that at strong coupling and for

certain states only constant matrix fields contribute to the dynamics, and moreover the

dynamics reduces to configurations of commuting matrices. Thus, for large matrices of

rank N , the number of degrees of freedom that are relevant are of order N , as opposed

to N2. We also have a list of exact wave functions to simulate. Thus, we do not need

to study the time evolution of N degrees of freedom, but instead we can concentrate on

thermodynamic properties of the degrees of freedom.

In particular, the most important description of the system under study is in terms of a

distribution of particles in six dimensions and the geometric properties of these distributions

can be correlated with certain geometrical degenerations of the higher dimensional AdS

dual geometry.

To the extent that there are exact analytical results for these distribution, the numerical

data seems to match the large N limit very precisely. This is possible only for the ground

state, where we have maximal rotational symmetry and is the only known distribution of

particles in the large N limit.

The distribution in the saddle point limit is a delta function. Since the radial fluctu-

ations of the distribution are of order one, while the radius of the distribution is of order

N1/2, the distribution approaches a delta function in the limit. It is expected that there

might be 1/N corrections on the radius depending on what observables are chosen to define

the radius itself. Many of these agree at large N , but differ by various 1/N corrections.

It is natural to imagine that these differences might account for various quantum

gravity effects, as different probes will be sensitive to different definitions of the radius.

In some sense, the simulations we are doing encode all the quantum gravity corrections

to the geometry. However, the dictionary between our simulations and gravity needs to be

improved.

We find that it is possible to consider other spacetime topologies. Guided by the

intuition of the LLM metrics [14] and the construction of giant graviton state operators in

the CFT [17], we have been able to consider wave functions that give rise to measurable

– 29 –



J
H
E
P
0
4
(
2
0
0
7
)
0
7
1

topology changes in the distributions of particles. In particular, we were able to show with

these configurations that the matrix model of six matrices is aware of the Planck scale size

of the five sphere of the dual AdS5 × S5 geometry, and therefore we have a measure of a

relevant non-trivial scale in the problem.

It is also worthwhile to point out that the size of the sphere in field theory units is of

order
√

N , and that each particle occupies a typical volume of size N3/2 ∼ (N1/4)5N1/4 ∼
N1/4l5pl, much larger than a Planck scale volume. This shows that the AdS/CFT cor-

respondence sees locality from a very different perspective than other discretizations of

gravity, where the Planck scale is the scale of granularity of the discretization [1]. Instead,

we are able to see below the scale of discretization by studying collective effects and the

Planck scale is related to studying the back reaction of the geometry to a heavy membrane.

As a curiosity related to this problem, in figure 5 the particles accumulate densely in the

region where geometry is behaving differently and it suggests that the density of resolution

compensates for the scale of interesting features below the typical scale of granularity.

We think it is important to emphasize that we are also very puzzled by the fact that

the particle distributions are not behaving like we expected from a simple comparison to

an LLM metric intuition. This discrepancy might be due to subtle issues regarding the

simulation itself. On the other hand it is possible that we have not identified the precise

correspondence to geometry in detail. Deciding between these options deserves further

study.

We believe it is possible to make various measurements of correlators numerically and

to compare them with the non-renormalization theorems for three point functions of BPS

states. This will require studying large samples of statistically independent configurations,

necessitating an improved study of error analysis to complement the relatively crude esti-

mates presented here.

It is straightforward to generalize our calculations to orbifold setups, following [13] and

to more complicated LLM geometries. In particular, one can imagine that once it is better

understood how to correlate the properties of the distributions to the metric aspects of the

LLM geometries, it will be possible to study directly topology changing transitions, like

the ones considered in [24].

Another important aspect that might be studied with these methods is to consider a

probe giant graviton that grows into the AdS region [19, 20]. Studying the corresponding

wave functions in detail could give us a precise coordinate map between the CFT field

variables and the radial direction of the AdS geometry.

One can also imagine using these numerical techniques to explore field theories that

are not well understood, like the CFT duals associated to AdS4 × S7 or AdS7 × S4. A

recent proposal states that BPS states for the field theory duals are also described by a

system of commuting matrices [35]. Unlike the case of N = 4 SYM, there is no measure

that one can derive from first principles to study these objects as we have described in this

paper. Numerical techniques might be very useful in making checks of a guess for that

measure.

Finally, it would extremely interesting if one could extend these techniques further to

study string states directly. This involves introducing the off-diagonal modes systematically
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into this setup, as well as the other spherical harmonics of the quantum fields on the

sphere [3]. Some partial success has been achieved for adding strings to the geometric

ground state in [8]. However, one can study the same problem for other geometries where

analytic string solutions are not available.

To conclude, we believe that the prospects for these types of simulations we have

presented in this paper is full of open questions that can be addressed numerically with

modest computer capabilities. It is our hope that numerical simulations might serve us a

source of intuition for effects that we can not calculate otherwise.
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A. Holomorphic wave functions

We want to consider the following Hamiltonian for N particles in 2d dimensions

H =
∑

i

− 1

2µ2
∇iµ

2∇i +
1

2
|~xi|2 (A.1)

where

µ2 =
∏

i<j

|~xi − ~xj |2 . (A.2)

and wave functions of the form

ψ = ψ0(X)P (z) (A.3)

where we follow the notation of section 2. In this notation ψ0 is a gaussian eigenfunction

of the Hamiltonian.

ψ0 ∼ exp(−
∑

i

~x2
i /2) (A.4)

P (z) is a homogeneous holomorphic polynomial on 3N complex variables

zs
j ∼ x2s−1

j + ix2s
j . (A.5)

The polynomial is invariant under permutation of the ~Xi. The z are holomorphic coor-

dinates of the particles, after we have made a choice of complex structure on R
2d. The

Hamiltonian is the leading semiclassical approximation of the effective Hamiltonian that

encodes all BPS states associated to the chiral ring of N = 4 SYM theory [3]. We are in-

terested in studying how good a description this Hamiltonian provides for the conjectured

states that we have written in section 2. As we have seen, we have a ground state wave

function ψ0 that is gaussian. We want to show that the possible corrections to A.3, or

to A.1 are very small, and can be ignored.
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When we calculate
1

µ2
∇i · µ2∇iψ0P (A.6)

there are terms that contain no derivatives of P , terms with only one derivative acting on

P , and terms that contain two derivatives of P . Let us separate these terms.

For the terms that do not depend on derivatives of P , P is acting just like a constant,

and we can use the fact that ψ0 is an eigenfunction of H to show that these terms just

give E0ψ0, the energy of the ground state. Now, the terms that contain two derivatives of

P are necessarily proportional to

(∇i)
2P = 0 (A.7)

and these vanish because P is holomorphic. Indeed, is is possible to write

∇2
i ∼

∑

s

∂zs

i
∂̄z̄s

i
(A.8)

So we are only left to understand the terms that contain one derivative of P . These

are given by
1

2µ2
(∇iP ) ·

(

ψ0∇iµ
2 + µ22∇iψ0

)

(A.9)

The second term gives us ψ0xi · ∇iP , and when we sum over i, we get the Euler vector for

the scaling ~xj → λxj . Since P is a homogeneous polynomial of degree m, we find that P

is an eigenfunction of the corresponding scaling operator, with eigenvalue m.

The only obstruction for this wave-function to be an eigenfunction of the Hamiltonian

is to check if
∑

i

∇iP · ∇iµ
2 (A.10)

vanishes or not. Now, we can easily show that

∇iµ
2 = µ2

∑

j 6=i

2(~xi − ~xj)

|~xi − ~xj|2
(A.11)

so that we can rewrite the expression in such a way that

∇iP∇iµ
2 ∼

∑

i6=j

1

|~xi − ~xj|2
(~xi − ~xj) · (∇i −∇j)P (A.12)

and there is no obvious mechanism for cancellations (except when d = 1).

What we want to do now is to think of this wave function as a variational approxi-

mation to an eigenfunction of the Hamiltonan. Seeing as different degree polynomials give

orthogonal states (they have different SO(6) quantum numbers), this is a well defined pro-

cedure to estimate the minimum energy solution of the Hamiltonian with given R-charge

quantum numbers.

What we notice is that these terms that do not cancel can only be important when

|~xi − ~xj| is small. For this situation we can ignore all other variables and concentrate on

two of them (α and β lets say), and expand P in taylor series about their middle point z0.
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This is, we define

zα = z0 + δz, zβ = z0 − δz (A.13)

If we define the following function of z0 and δz with all other particles at fixed position,

f(z0, δz) = P (zα, zβ), then f ∼ P (z0 + δz, z0 − δz) = P (z0 − δz, z0 + δz) because of the

symmetry properties of P . From here we get f(z0, δz) = f(z0,−δz). Also, from the change

of variables we find that ∇α −∇β ∼ ∇δz. We want to understand f near the region where

δz = 0. From the symmetry properties, the first derivative of f vanishes at δz = 0, and we

need to expand f (the function P ) to second order in δz. We find then that the possible

singular correction to the energy is finite (of order f ′′/f).

In this sense, the term that we can not control easily is bounded, and can be considered

as a small perturbation near the region when the particles coincide. Elsewhere, the wave

function is an approximate solution of the time independent Schrodinger equation. For

this last argument we have not exploited any additional properties of P other than the

symmetry under exchange of particles.

What we want to do now, is to be more careful about the second order expansion of

what we have labeled f . Indeed, a Taylor expansion of f shows us that

f(z0, δz) ∼ f(z0, 0) +
1

2
δziδzjf,ij(z0, 0) + . . . (A.14)

where the partial derivatives in f are taken with respect to the δz variables.

We get then that
∂f

∂δzi
= f,ij(z0, 0)δz

j (A.15)

and that we need to evaluate the average contribution to the energy by integrating this

expression in the relevant region where this term is important, namely
∫

(δz)d
1

|δz|2 (δzi)(δzj)f,ij (A.16)

We notice that the integral over δz on a small symmetric disc vanishes unless i = j in

the expression above, and that spherical symmetry guarantees that this is proportional to

fii(z0, 0) ∼ ∇2
δzf . Now we go back to our expression for P , and we remember that P is

holomorphic, so that f is also a holomorphic function of δz once we have chosen a complex

structure for the zα. This means that for P holomorphic, the term that is hard to compute

averages to zero in the relevant region where it is important for the case of holomorphic

functions.

This means that the energy of the state has to be given by

E ∼ E0 + m (A.17)

where m is the degree of P and E is extremely close to E0 + m.

In the fully supersymmetric problem the corresponding BPS states are supposed to

have energy given exactly by E = E0 + m, and all other states with the same R charge

have greater energy of order 1. This implies that corrections from ignoring supersymmetry

are small, and that we can assume that in the worst case scenario, that the wave functions

are not exact solutions of the supersymmetric problem, then the wave functions we have

written are very good variational approximations to those wave functions.
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